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ABSTRACT 
 
Many operational NWP centres now produce global medium-range (≤ 14 day) and 
higher-resolution, limited-area, shorter-range (≤ 3 day) ensemble forecasts.  These 
provide probabilistic guidance and early warning of the likelihood of high-impact 
weather.  There are two main challenges in the design of ensemble prediction systems:  
(1) properly simulating the initial condition uncertainty, including the definition of the 
initial ocean, land, and sea-ice states, and (2) properly simulating the uncertainty due to 
inadequate representations of physical processes, especially parameterizations.  
 
Post-processing the output from the ensemble prediction systems using past forecasts 
and observations/analyses can dramatically reduce systematic errors in forecast 
products and improve skill and reliability. The generation of products from multi-model 
ensembles (facilitated by the TIGGE database, sharing global operational ensemble 
forecasts) has also been shown to frequently improve the skill and reliability of 
ensemble predictions. 
 
1. INTRODUCTION 
 

From the earliest days of weather forecasting, there has been an appreciation 
that there are inevitable uncertainties in weather prediction. Admiral FitzRoy, the 
founder of the UK Met Office, wrote in a letter to the British Times newspaper some 150 
years ago that “forecasts are expressions of probabilities – and not dogmatic 
predictions.”  However, only in the last two decades has it become computationally 
feasible to apply methods that objectively calculate the state-dependent uncertainties in 
weather forecasts.  Prior to this, forecast guidance typically consisted of one model 
integration, and forecasts were expressed deterministically.  Now, while some 
deterministic models are often run at higher resolutions, an increasing role is played by 
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ensembles of forecasts that are integrated from sets of slightly different initial 
conditions, and employ methods to simulate the uncertainty of the forecast model itself.  
The intent is to make sharp (specific) yet reliable state-dependent probabilistic forecasts 
(Gneiting et al. 2007) directly from the ensemble guidance.   

 
The penetration of probabilistic concepts throughout the forecast process is not 

yet complete.  Customers of weather forecasts still generally expect deterministic 
expressions for upcoming forecasts, even though in many cases more appropriate 
decisions could be made when leveraging probabilistic information (Zhu et al. 2002).   
Further, though ensemble prediction waxes and deterministic predictions wanes at 
operational centres, prediction systems are still commonly evaluated with deterministic 
verification methods.  As discussed by Palmer (2014), this can lead us to inappropriate 
conclusions about whether we have improved our prediction systems.  Common 
deterministic verification metrics include root mean square (RMS) errors, anomaly 
correlations, and threat scores (Wilks 2011, Joliffe and Stephenson 2012).  
Unfortunately, such measures often penalize the forecasting of small-scale features if 
they are not predictable; a smoother forecast lacking such scales of motion is assessed 
as providing higher skill.  The existence of smaller-scale phenomena is of course 
realistic and consistent with a continuous energy spectrum across scales (Nastrom and 
Gage 1985).  In contrast, the use of probabilistic verification metrics suffers no such 
consequences.  A forecast is rewarded for accurately predicting the probability as 
specifically as possible, subject to their being reliable. If an ensemble of forecasts is 
missing small scales present in the analysis, it will be penalized for this lack of 
variability.   
 
 Despite such impediments, over the last decade ensemble predictions have 
matured, in part from a more thorough understanding of the underlying theoretical 
concepts, in part from better and higher-resolution prediction systems afforded by larger 
computers, and in part from research.  This includes collaborative studies facilitated by 
WMO’s THORPEX program and its shared TIGGE (THORPEX Interactive Grand Global 
Ensemble, Bougeault et al. 2009) database.  This chapter reviews the current state of 
the science of ensemble prediction and suggests fruitful areas for further research.  In 
section 2, we touch upon the advances in construction of initial conditions; the 
operational centres now have as many similarities in their methods as differences, 
thanks to advances in ensemble-based data assimilation.  We also discuss uncertainty 
in the state of the lower boundary (ocean, land, ice).  Section 3 focuses on a current key 
development in ensemble prediction, the use of stochastic forcing methods to treat 
model uncertainty. Those techniques are at an earlier stage of the development cycle 
than initial-condition uncertainty. Section 4 describes various practical methods to 
address these systematic errors, both by combining predictions from different centres’ 
ensemble prediction systems and by using more objective statistical methods that 
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correct today’s forecast based on discrepancies noted between past forecasts and 
observations/analyses.  Finally, in section 5 we discuss some applications of ensembles 
to produce risk-based weather forecasts, particularly as they enable improved forecasts 
of high-impact weather events.  Some related material on ensemble design and post-
processing is also available in the chapter “Global Environmental Prediction.” 
 
2.  ENSEMBLE INITIAL CONDITIONS. 
 
2.1 Introduction. 

 
At the dawn of operational ensemble prediction, the scientific debate about 

ensembles focused largely on the method of construction of the ensemble of initial 
atmospheric model states, meant to sample the uncertainties in the initial conditions.  
On the basis of trying to provide a medium-range ensemble that explained as much as 
possible of the forecast error, ECMWF scientists proposed the use of “singular vectors” 
(Buizza and Palmer 1995, Molteni et al. 1996, Li et al. 2008), perturbations that grow 
the fastest in time given the chosen initial and final norms for measuring perturbation 
size.   For both times, ECMWF chose the total-energy norm.  In more recent years, 
ECMWF has blended in perturbations generated by running parallel, reduced-resolution 
4D-Var cycles that assimilation perturbed observations.  They refer to this as 
“ensembles of data assimilations,” or EDA (Bonavita et al. 2012; Lang et al. 2014).   

 
Under the assumption that the most critical initial-condition errors would be 

inherited from the background forecast in the data assimilation process, NCEP initially 
used the “bred vector” method (Toth and Kalnay 1993, 1997). Initially random 
perturbations were repeatedly forecast forward in time to the next assimilation cycle, 
then rescaled and adjusted in amplitude to be generally consistent with presumed 
analysis uncertainties.  Analysis uncertainties were described by a “mask,” i.e., a field of 
spatially varying analysis variances.  Over the last five years, NCEP has used a 
modified version of the breeding technique known as “ensemble transform with 
rescaling,” or “ETR” (Wei et al. 2008). This procedure added ortho-normalization so that 
pairs of perturbations did not result in forecasts with as highly correlated errors. 
 

The Canadian Meteorological Centre (CMC) initially used the “perturbed 
observations” method to quantify the effect of observation errors on the uncertainties in 
the initial state (Houtekamer and Derome 1995). Parallel 3D-Var data assimilation 
cycles were conducted, with each member cycle updated with perturbed observations 
consisting of the control observations plus realizations of random noise consistent with 
observation-error statistics.  In recent years, CMC has migrated to the use of an 
ensemble Kalman filter, or “EnKF” (e.g., Evensen 1994; Houtekamer and Mitchell 1998, 
Burgers et al. 1998, Hamill 2006) whereby the ensemble provides background-error 
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statistics for the data assimilation.  In 2015, NCEP will also migrate to using initial 
perturbations from 6-hour forecasts generated from EnKF analysis perturbations.  The 
UK Met Office uses a related technique known as the ensemble transform Kalman filter, 
or ETKF (Wang and Bishop 2003, Bowler et al. 2008).   

 
There actually is a theoretical basis for the optimal choice of initial condition 

perturbations, outlined in Ehrendorfer and Tribbia (1997).  Under assumptions of 
Gaussianity, linearity of error growth, and the choice of final time’s norm, analysis-error 
covariance singular vector initial perturbations will provide the maximum amount of 
explained forecast error variance at the chosen final time. Restated, these are the select 
perturbations that are initially consistent with analysis-error statistics while growing most 
quickly.   With this theoretical result in mind, we have the ability to understand the 
various approximations used by the various centres. While ECMWF’s total-energy 
singular vector perturbations grow quickly, their singular vectors are sub-optimal due to 
the choice of total energy rather than analysis-error covariance as the initial norm.  Their 
singular-vector perturbations may have too low amplitudes near the tropopause and the 
surface relative to what they would have were they consistent with the initial analysis 
error covariance norm (Barkmeijer et al. 1998, 1999, Hamill et al. 2002b).  This may 
result in unrealistic perturbation amplitudes in very short-range forecasts.  ECMWF’s 
more recent EDA technique will encounter sampling error from the limited number of 
perturbed data assimilations conducted and uses an initial covariance that is not fully 
flow-dependent, leveraging variances but not covariances from the previous cycle’s 
EDA forecasts.  These perturbations are not optimized to grow as quickly as possible, 
either.   

 
Bred and ETR perturbations only approximately are consistent with initial 

analysis error statistics; they are not explicitly estimating the analysis-error covariances 
from data assimilation cycle.  The procedure only rescales (and in the case of ETR, 
orthogonalizes) the forecast perturbations.  Thus, they cannot account for the 
randomization effects from observation assimilation (Hamill et al. 2002a).  Further, they 
are optimized for past forecast error growth rather than future growth.    

 
CMC’s and NCEP’s EnKF approach are conceptually appealing, in that the 

resulting initial perturbations are more closely designed to represent analysis-error 
statistics.  In practice, the realism of these perturbations may be limited by several 
factors.  These include the fidelity of model-error representations used in the generation 
of the ensemble (Mitchell et al. 2002, Zhang et al. 2004, Hamill and Whitaker 2005, 
2011, Anderson 2009, Whitaker and Hamill 2012), the underlying assumption of 
Gaussian error statistics, and the limited ensemble size which requires the introduction 
of ad-hoc procedures like “covariance localization” (Houtekamer et al. 2001, Hamill et 
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al. 2001) that can introduce imbalance.  The initial perturbations are typically random 
rather than pre-selected for optimal forecast-error growth.  The Met Office ETKF 
represents a low-dimensional approximation to the EnKF that doesn’t involve a full 
assimilation cycling and covariance localization (Bowler et al. 2008, Bowler and Mylne 
2009).  Consequently, the rescaling and rotation process of the ETKF strips out too 
much variance from the prior forecast ensemble, and hence perturbations must be 
dramatically scaled up in size before use.   

 
In general, limited computational capacity requires making simplifications of one 

sort or another.  The choice of which simplification to apply has varied between the 
operational centres.   Still, over the past two decades the various centres have evolved 
toward using methods that are increasingly consistent with the theoretical ideal outlined 
by Tribbia and Ehrendorfer (1997).    
 
2.2 Underpinning research. 
 

While methods for initializing ensembles of atmospheric states are becoming 
more similar, the ensemble prediction systems continue to have too little spread near 
the earth’s surface. This is likely because the uncertainty in the land, water, or ice state 
is currently not treated at all or is treated sub-optimally.  Addressing this is an important 
direction for future research in the design of ensemble prediction systems. 

 
Consider the land state.  As outlined in Sutton et al. (2006), near-surface 

temperature forecasts and precipitation forecasts can be sensitively dependent on the 
initial state of soil moisture, and furthermore the analyses of soil moisture are often quite 
error-prone.  The soil moisture states are commonly estimated through the offline 
cycling of a land-surface model forced by analysed temperatures, humidities, and 
precipitation.  These analyses can be highly imperfect, and the land-surface model itself 
can have significant imperfections, such as mis-specifications of model constants such 
as soil hydraulic conductivity or surface roughness length.  Various centres have 
recently introduced some methods for increasing near-surface variability, such as by 
perturbing soil moisture in some form (e.g., Lavaysse et al. 2013, Tennant and Beare 
2014).  Still, there is much room for improvement.  Research is needed into improved 
ways to simulate the range of model structural and initial-condition uncertainties near 
the surface (e.g., Hacker et al. 2007, Hacker and Rostkier-Edelstein 2007), thereby 
providing more realistic ensembles of near-surface temperatures and humidities as well 
as ranges of initial soil states. 
 
 There is also increasing demand for the medium-range ensemble predictions to 
be extended to sub-seasonal time scales.  For these longer-lead predictions, the spread 
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of the atmospheric ensemble will usually grow to near its climatological variability.  What 
predictive skill remains may be in only a few low-frequency modes of oscillation, some 
related to ocean-state oscillations such at El Niño.  Hence, for these extended-range 
predictions, it may be necessary to quantify the initial uncertainty of the ocean state and 
how that uncertainty evolves through the duration of the forecast.  Ideally, there would 
be numerical consistency between atmospheric perturbations and ocean perturbations; 
for example, in a member of the ensemble that has larger wind speeds than average, 
there might be greater vertical mixing in the ocean state for that ensemble member.  
Since synoptic-scale variability peaks at O(1 week) while ocean variability peaks at O(1 
year), this discrepancy of time scales makes the direct coupling of ocean and 
atmospheric initialization via methods such as the EnKF potentially problematic, and in 
need of further exploration (e.g., Yang et al. 2009, Ueno et al. 2010).  Relatedly, 
ensemble predictions out to sub-seasonal time scales may be sensitively dependent 
initialization of sea-ice amount and thickness (Juricke et al. 2014) as well as land snow 
cover (Jeong et al. 2013).   
 

There are complicated ensemble initialization challenges associated with very 
high-resolution, shorter-range forecasts as well.  The shorter-range, convection- 
permitting models have the ability to provide forecasts with detail at the scale of 
individual thunderstorms (e.g., Hohenegger et al. 2008, Clark et al. 2009, 2010, 
Schwartz et al. 2010, 2014, Johnson and Wang 2012, Duc et al. 2013).  However, data 
assimilation systems like the EnKF have underlying assumptions such as Gaussian 
error statistics (Lawson and Hansen 2004, Hodyss 2012), assumptions that may be 
more frequently unrealistic at the convective scale.  One would not a priori expect 
Gaussian ensemble error statistics of cloud liquid water, for example, in the region of a 
thunderstorm; they might have two dominant modes, no cloud water (with no 
thunderstorm) and ample cloud water (with thunderstorm).  The optimal methods for 
data assimilation and ensemble initialization in the presence of such non-Gaussian error 
statistics are not clear.  Further, methods are desired that simultaneously perform a high 
quality analysis and initialization of both the larger and smaller scales of motion.  There 
are some suggestive directions; there is much research into particle-filter methods as a 
potential solution (e.g., Gordon et al. 1993, Doucet et al. 2001) but there are also 
concerns that the “curse of dimensionality” may make such methods impractical with the 
very-high dimensional systems common in weather prediction (Snyder et al. 2008).  
Other new directions to address non-Gaussianity include the rank-histogram ensemble 
filter (Anderson 2010, Metref et al. 2014) and methods that deal with position errors 
(Ravela et al. 2007,  Nehrkorn et al. 2015).  ETKF methods are being tried by the 
German Weather Service (Harnisch and Keil, 2014). 

 
A common approach for providing spatially detailed forecasts at short leads is to 

use a high-resolution, limited-area ensemble prediction system (Hamill and Colucci 
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1997, 1998, Frogner et al. 2006, Bowler et al. 2008, 2009, Bowler and Mylne 2009, 
Aspelien et al. 2011, Romine et al. 2014) commonly with lateral boundary conditions 
provided by a global ensemble prediction system.  There are a host of challenges 
associated with the use of limited-area ensemble prediction systems with one-way 
interactive nests, with many outlined in Warner et al. (1997).  The one-way nesting 
prohibits scale interactivity, whereby developing features inside the limited-area domain 
can affect the larger scales of motion outside the domain.  If the limited-area prediction 
is carried out in a very small domain, the ability to predict detailed features may be 
overwhelmed by the “sweeping” in of lower-resolution information from the global 
model.  In an ensemble context, it is also important to provide lateral boundary 
conditions with appropriate variability (Nutter et al. 2004, Torn et al. 2006). 
 
2.3 Linkages and requirements. 

 
Several WMO-sponsored projects will help address many of the research 

questions identified here.  For example, the Sub-seasonal to Seasonal (S2S) prediction 
project (WMO 2013) will facilitate coordinated explorations of issues related to 
prediction at these time scales, including methods for initializing coupled models and 
how to generate ensembles.  WMO is also developing a program for improving 
forecasts of high-impact weather (Jones and Golding 2014) that will facilitate further 
exploration in the design of ensemble prediction systems.  Inter-comparisons of 
prediction systems such as Buizza et al. (2005) have been facilitated in recent years by 
the TIGGE project (Bougeault et al. 2009, Swinbank et al. 2015); more inter-
comparisons to understand the evolving relative strengths and weaknesses of various 
ensemble methodologies are still needed. 

 
Despite the widespread interest in short-range, high-resolution ensemble 

prediction, collaboration between prediction centres on this avenue of research has 
been more difficult; each centre typically chooses a more limited region of interest 
driven by their country’s need and the tight production timelines for short-range forecast 
guidance.  Still, given the success with global multi-model ensemble prediction (see 
section 4 below), there may be significant benefit in future coordination between 
prediction centres (Paccagnella et al. 2011).  For example, were each centre in Europe 
to enlarge the domains of their high-resolution ensemble forecasts to a general common 
domain while each decreased their ensemble size, it may be possible to have a neutral 
impact on computational expense at each centre while leveraging the advantages of the 
multiple dynamical cores, initialization methods, and parameterization suites 
demonstrated with global models under TIGGE.  This may result in ensembles that do a 
better job of spanning the forecast uncertainty.  Such approaches would require greater 
coordination between the prediction centres. 
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The validation of ensemble prediction systems for high-impact variables such as 

precipitation amount and type are hindered by challenges in the sharing of data and by 
different data processing methods.   Member countries are highly encouraged to share 
their raw and synthesized data with each other. 
 
3. STOCHASTIC FORCING. 
 
3.1. Introduction. 
 
 Finite grid spacings result in many meso- and microscale phenomena being 
unresolved in atmospheric models.  In such cases the effects of the unresolved scales 
upon the resolved scales are typically “parameterised,” that is, estimated with closure 
assumptions that depend on the resolved-scale weather parameters.  Parameterisation 
schemes may be developed in several ways (Craig 2014).  One way is to base 
parameterisations on process models that are based out theory developed independent 
of the atmospheric model.  A prediction of mean effects are produced, and sometimes 
higher moments are estimated as well.  Another approach is to use systematic 
truncations of equations in high-resolution.  A third approach is to use ad-hoc 
formulations to produce a desired effect in the model (for example, hyperdiffusion to 
control grid-scale noise).   

 
Commonly, these parameterisations are deterministic; two grid boxes with 

identical grid-scale states will have the same parameterised forcings diagnosed for each 
box, even though the sub-grid scale details may vary between them.  Where the model 
grid size is large, it is assumed that the phenomena being parameterised is likely to be 
much smaller than the size of the grid box, and its mean statistical properties of the sub-
grid effects can be estimated with reasonable approximation (Fig. 1a).  As models are 
run using finer grid spacings, two challenges become increasingly apparent.  First, note 
that Fig. 1a suggests a simplification that commonly is not valid, that the unresolved 
phenomena has one characteristic scale clearly smaller than the grid scale.   Much 
more commonly, there is a spectrum of motions (Fig. 1b); for example, not all 
thunderstorms are in fact the same size.  Second, there may no longer be a clear scale 
separation between the phenomena in question and the size of the grid box; the spread 
of estimates of sub-grid effect between grid boxes with nearly identical large-scale 
states can be of comparable magnitude to the mean estimate (Plant and Craig 2008).  A 
consequence of neglecting this in the parameterisation design is that the ensemble 
predictions may be unduly similar to each other.  This deficiency of spread leads to 
over-confident probabilistic forecasts. 
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Apart from the issue of scale separation, there are several other sources of 
uncertainty in parameterizations.  The grid-scale effects of some subgrid-scale 
processes may depend on unknowable sub-grid details, not just grid-scale details.  An 
example of this is the effect of greatly variable cloud droplet size spectra on the 
reflection, absorption, and transmission of short-wave radiation.  Some details of grid-
scale characteristics may be mis-estimated and should be treated as random variables.  
For example, a mis-estimation of soil characteristics could lead to errors in energy 
balance affecting surface-temperature forecasts and convective initiation (Sutton et al. 
2006).   
 
3.2  Underpinning research.  
 
 A variety of methods have been used to simulate model uncertainty.  One of the 
simplest methods is to estimate probabilities using multi-model ensembles.  Since 
weather prediction centres tend to have developed their models and parameterisations 
suites somewhat independently, the combination of several ensembles may account for 
some of the knowledge uncertainty. Multi-model ensembles will be discussed in more 
detail in section 4 below.   
 

A related approach is to use multiple parameterisations amongst the ensemble 
members (e.g., Charron et al. 2010, Berner et al. 2011).  For example, member 1 may 
use a Kain-Fritsch deep convective parameterisation, member 2 a Tiedtke 
parameterisation, and so on.  Experimentally, many have noted significant increases in 
spread and some improved skill with the use of such approaches.  Still, there are 
significant drawbacks to the multi-parameterisation approach. It becomes necessary to 
maintain a library of multiple parameterisations rather than one, increasing software 
maintenance expense.  Also, should one of the parameterisations be improved 
significantly, it would be desirable to use that one consistently, so that its improvement 
affects all ensemble members, rather than retaining out-of-date parameterisations for 
the sake of diversity.  Finally, there can be a loss of “exchangeability,” the desirable 
property that all ensemble members have similar error statistics.   

 
In a class of schemes referred to as “perturbed parameters,” a number of key 

parameterisation constants are identified whose values are uncertain but which have a 
significant effect on the model tendencies (e.g., Bowler et al. 2008, Charron et al. 2010).  
A range of plausible but different parameterization constants are used across the 
ensemble members to represent the uncertainty in those parameter values.  In some 
versions of this approach the perturbed parameters are held constant for a given 
ensemble member, while in other versions they are varied with time.  Such methods are 
defensible to the extent that parameters are perturbed consistent with their uncertainty 
and are fully tested in combination with other parameterisation constants; without 
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rigorous testing and randomizing the values of the constants over times, it’s possible 
that specific combinations of perturbed parameters will result in members with non-
exchangeable statistics and growing systematic errors. 
 

A very promising approach to representing model uncertainties is the use of 
stochastic forcing methods, i.e., changing the design of parameterisations that are 
known to have uncertainties so that they provide stochastic rather than deterministic 
estimates of the sub-grid effects.   One of the earliest methods is “stochastically 
perturbed physical tendencies” (SPPT; Buizza et al. 1999, Palmer et al. 2009, Bouttier 
et al. 2012). SPPT is a somewhat ad-hoc method that multiplies the total parameterised 
tendency by a random number that fluctuates in time and space.  These methods have 
been shown by several centres to increase ensemble spread to be more consistent with 
mean error.   
 

Realistic representation of model uncertainties requires that, as far as is possible, 
takes into account an understanding of the relevant physical processes.  Stochastic 
kinetic energy backscatter (SKEB; Shutts et al. 2008, Berner et al. 2008), attempts to 
take account of the unphysical energy loss that typically occurs in models as a 
consequence of numerical diffusion, mountain drag, and deep convection.  This method 
has had the practical effect of making the model energy spectra in ensemble members 
look more like -5/3 spectral slope expected by theory for the mesoscale (Nastrom and 
Gage 1985), thus notably increasing spread in the smaller scales of motion.  It is yet 
unclear, however, whether SKEB is preferable to running ensemble prediction systems 
with reduced hyperdiffusion; the two would likely have similar effects. 
 
 These considerations have stimulated significant new research into physically 
based stochastic parameterizations, whereby stochasticity is incorporated into the 
parameterization in physically realistic ways.  Examples of research into stochastic 
parameterization for deep convection include Lin and Neelin (2000, 2003), Majda 
(2007), Tompkins and Berner (2008), Plant and Craig (2008), Teixeira and Reynolds 
(2008), Frenkel et al. (2012), Peters et al. 2013, Grell and Freitas (2014), and Keane et 
al. (2014).  Stochastic parameterization concepts touching on cloud microphysics 
includes Posselt and Vukicevic (2010), and van Lier-Walqui et al. (2012).  
 

A further consideration is that models need to take into account the uncertainties 
in the forcing of the atmosphere from the lower boundary. Work addressing the 
uncertainties in land-surface processes includes Lavaysse et al. (2013) and Tennant et 
al. (2013); ocean-atmospheric uncertainty has been studied by McClay et al. (2012).  A 
longer list of reading material on this subject is available from the 2011 WMO- and 
ECMWF-sponsored workshop on model uncertainty (ECMWF, 2011). 
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3.3 Linkages and requirements. 
 

 The 2011 workshop mentioned above provided a succinct summary of the 
necessary research.  The summary stated,  
 

“the stochastic parametrization paradigm needs further development at the 
process level, and hence needs to be incorporated as part of general 
parametrisation development. Key tools will include sophisticated analyses of 
observational datasets, output from cloud resolving models, and analyses from 
objective data assimilation. Data assimilation techniques themselves will benefit 
from better representations of model uncertainty.”   

 
The development of physically based stochastic parameterisations at the individual 
process level will proceed more rapidly if the scientists involved in the parameterisation 
development and the ensemble system development collaborate.  The parameterisation 
methods need to be consistent with the physical laws while faithfully replicating the 
statistics of the processes. For some parameterisations, the entire formulation might be 
cast probabilistically, such as the representations of the sub-grid distributions of vertical 
velocity, temperature, and cloud liquid water as joint PDFs, (e.g., Larson and Golaz 
2005, Larson et al. 2012, Bogenshutz and Krueger 2013).  With such a formulation, 
generating a realistic range of parameterization outputs for the ensemble is somewhat 
more straightforward. 
 

Determining the space- and time-dependent relationships of the PDFs will 
require further study.  Parameterisation inputs may have correlated errors; for example, 
a microphysics parameterization may infer a different drop-size distribution in the 
presence of few vs. many aerosols, and the aerosol concentration likely is correlated 
from one grid cell to the next.  Stochastic parameterisation outputs should also have 
appropriately correlated structures.  For example, the parameterisation of convection 
should be “non-local” in many circumstances; the organization of convection is 
important for the realistic simulation of mesoscale convective systems and their 
influence on larger-scale phenomena.    

 
Modern ensemble-based data assimilation methods provide one useful way of 

evaluating whether changes in simulating model uncertainty are realistic.  With an 
improved model uncertainty method, the space-time background-error (first-guess) 
covariances should become more realistic, resulting in a more appropriate adjustment 
of the background forecast(s) to the observations.  Over time, then, the statistics of the 
mean absolute error of observations minus the forecasts1 should decrease.  There are 

                                            
1 processed through the data assimilation system’s “forward operator.” 
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other novel methods (e.g., Scheuerer and Hamill 2014) for evaluating relationships 
between forecast state elements and whether they resemble the relationships between 
observed states.  
 

As noted earlier in this section, parameterisation originally relied on the large 
separation of scales between resolved and unresolved scales.  We have discussed the 
use of stochastic methods to treat the situation where the scales of physical processes 
start to approach the model grid scales.  As model resolutions improve further the 
scales of some physical processes start to overlap the grid-scales.  For example, 
kilometre-scale models are now resolving deep convection, although they may also 
need to parameterize shallow convection.  The regime where processes are partially 
resolved is often referred to as the grey zone.  In this regime, it is a particular challenge 
to represent turbulent transport of heat, moisture and momentum.  At the convective 
scale it is particularly important to properly represent physical processes in order to 
represent the uncertainties in the initiation of convection, and the formation of fog and 
low cloud,  

 
The problem is addressed by the WMO “Grey Zone” project which is coordinated 

by the Global Atmospheric Systems Studies (GASS) within the WMO World Climate 
Research Program (WCRP) and the Working Group on Numerical Experimentation 
(WGNE).   Many scientists are contributing to the development of cloud-resolving model 
simulations that can be coarse-grained and used to provide some ground truth for the 
development of stochastic parameterizations (e.g. Palmer et al. 2009).   

 
Another international project providing valuable data to support the development 

of stochastic parameterizations is the Protocol for the Analysis of Land-Surface Models 
(PALS), organized by the WMO/WCRP Global Energy and Water Cycle Exchanges 
Project (GEWEX).  This project provides data sets suitable for testing and evaluating 
land-surface models, and can be leveraged to test land-surface models that incorporate 
physically based stochastic parameterizations.   

 
The WWRP has set up a new working group on Predictability, Dynamics and 

Ensemble Forecasting (PDEF).  One of the main scientific challenges that the group will 
address is the representation of model uncertainty using stochastic techniques.  The 
working group will support the WWRP projects, including the three THORPEX legacy 
projects on Subseasonal to Seasonal prediction (S2S), Polar Prediction Project (PPP) 
and High-impact Weather (HIWeather).  Extending the data available from TIGGE, the 
S2S project will collect ensemble forecasts out to a range of several months, suitable for 
the intercomparison of operational methods for simulating model uncertainty and the 
uncertainty associated with coupled-state interactions. The WMO’s Polar Prediction 
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Project (PPP) will collect databases of Arctic conditions that can be used for the 
refinement of stochastic parameterizations in the Arctic.   

 
4. MODEL COMBINATION AND STATISTICAL POST-PROCESSING.  

 
4.1. Background.  

 
Although much effort has been applied to reduce systematic errors in NWP 

models, given past history they are likely to be large enough to be of consequence for 
decades to come.  Deterministic NWP output may often exhibit systematic mean error, 
and ensembles may also be under-dispersive. Although the spread of ensembles has 
been significantly improved for many variables in recent years (e.g., Gagnon et al. 
2014), the customers of weather guidance are requesting reliable, unbiased 
probabilistic guidance right now for all variables.  Hence, other methods such as multi-
model or multi-centre ensembles and statistical post-processing are commonly applied 
to improve forecast reliability and skill.  
 

Multi-centre ensemble combinations exhibit improved skill and reliability of the 
forecasts (Swinbank et al. 2014 and references therein), especially at the larger scales 
of motion that are within the predictive capacity of these systems. The different systems 
commonly exhibit varying systematic errors, and hence their combination provides 
some increased spread and reduction of error through cancellation.  Multi-centre 
combinations are now a regular part of the post-processing used by weather forecasting 
centres.  Indeed, the North American Ensemble Forecast System (NAEFS; Candille, 
2009) has been established by the weather services of the USA, Canada and Mexico to 
provide multi-model ensemble forecast products as an operational counterpart to the 
TIGGE research project.  The benefit of combining predictions from different ensembles 
also extends to cyclone track predictions (e.g., Yamaguchi et al. 2012).  The 
applications section below continues the discussion of multi-model techniques.   
 

Beyond simple model combination, many statistical post-processing methods 
may be applied that address the systematic errors of ensemble predictions.  The 
general approach is to adjust current model guidance using relationships between past 
forecasts and observations/analyses.  Many approaches have been proposed in the last 
several years, including Bayesian Model Averaging (BMA; Raftery et al. 2005, Wilson et 
al. 2007, Sloughter et al. 2007, Hamill 2007, Fraley et al. 2010) and related techniques 
(Wang and Bishop 2005, Glahn et al. 2009, Unger et al. 2009), non-homogeneous 
Gaussian regression (NGR; Gneiting et al. 2005, Hagedorn et al. 2012), logistic, 
extended logistic, and heteroscedastic extended logistic regression (e.g., Hamill et al. 
2008, Wilks 2004, Roulin and Vannitsem 2012, Messner et al. 2014), analog methods 
(Hamill and Whitaker 2006, delle Monache et al. 2013), and many other methods (e.g., 
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Hamill and Colucci 1998, Eckel and Walters 1998, Cui et al. 2012, Flowerdew 2013, van 
Schaeybroeck and Vannitsem 2014, Scheuerer 2014, Scheuerer and König 2014).  
For the calibration of uncommon events such as heavy precipitation or for longer-lead 
forecasts where the signal is small and errors are large, a large amount of training data 
may be needed.  One approach to provide extra sample sizes is to run many forecasts 
of historical cases with a current NWP system (often referred to as reforecasts; Hamill 
et al. 2006, 2013, Hagedorn 2008, Fundel et al. 2010, Fundel and Zappa 2011).  
Another approach to increasing sample sizes may be to compose training data across 
many locations (e.g., Charba and Samplatsky 2011ab, Hamill et al. 2008, 2015). 

 
Statistical post-processing methods are commonly applied independently for 

each forecast point and lead time.  Some applications such as hydrological prediction 
can benefit from additional information on the joint probabilities between many 
locations, information which can be lost when processing the data independently. 
One particularly useful approach for providing correlative information may be through 
“ensemble copula coupling” (ECC, Schefzik et al. 2013 and references therein). Figure 
2 shows how the ECC technique can be used to restore the spatial structure in 
ensemble members that have previously been calibrated using BMA.  Flowerdew 
(2013) also used a similar approach to ensure spatial coherence of the calibrated 
ensemble members as part of his reliability-based ensemble calibration method. A 
complementary approach where multivariate relationships are set using climatological 
data is known as the Schaake Shuffle (Clark et al. 2004).  Wilks (2014) provided a 
comparative evaluation of two. 

 
4.2 Underpinning research. 
 
 Despite the proliferation of methods for statistical post-processing, it appears that 
continued research is needed into improved methods. Methods that may be optimal for 
one forecast problem (e.g., heavy precipitation) may not be optimal for another (e.g., 
precipitation type forecasting).  Hence, continued research into the development of 
improved algorithms is desired, especially for variables related to high-impact weather 
(tropical cyclone intensity, precipitation type, tornado probability, calibration of joint 
probabilities, and so forth).  Methods that facilitate exploratory data analysis for the very 
high-dimensional data common in post-processing would be helpful; we need to identify 
predictors and classes of methods that will work adequately from dry to moist locations, 
from tropical to extra-tropical. 
 
 In many situations now, the differences in skill between several credible post-
processing algorithms may not be as large as the differences in skill for one algorithm 
for small vs. large training data sets.   Extensive reforecast data sets are expensive to 
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compute, so additional research would be helpful to inform how best to construct the 
reforecasts.  For example, which provides the most useful data across a range of post-
processing applications:  is a ten-member, twice weekly reforecast spanning ten years 
preferable to a five-member, twice weekly reforecast over 20 years?  What about a five-
member, four times weekly reforecast spanning ten years?  Should reforecast samples 
be more frequent for shorter-lead forecasts than for longer-lead forecasts, or vice 
versa?  Hamill et al. (2014) provides some guidance behind possible choices, but more 
research is needed. 
 
 Another challenge with reforecasts is that their statistical characteristics should 
resemble those of the current operational forecast model.  Ideally, this would mean that 
they would be initialized with reanalyses and ensemble initialization methods that were 
the same as used operationally; the same forecast model at the same resolution, the 
same data assimilation methodology.  Extensive reanalyses may be impractical for 
every operational centre to compute for each forecast model.  This then raises the 
practical question as to whether the reanalyses from a different modelling system can 
be used with or without some modification for reforecast initialization.  This is a very 
new area of research and is currently being pursued at the Canadian Meteorological 
Centre (personal communication, N. Gagnon, 2014) and at Météo-France (personal 
communication, M. Boisserie).   
 
4.3  Linkages and requirements. 

 
The current literature is replete with the testing of large varieties of methods for 

statistical post-processing.  Unfortunately, there are no standardized test data sets that 
have been published, so it is often difficult to know whether a proposed new 
methodology is better than an older one, since they likely were not tested with the same 
data.  The development of some standardized forecast and observation/analysis data 
sets would be helpful. 

 
Since post-processing is dramatically improved with large samples, should the 

operational centres embrace the reforecast methodology, they will also need 
dramatically enlarged disk space to make the data accessible to in-house and external 
developers.  Such costs should be incorporated when soliciting bids for future high-
performance computing systems. 

 
Finally, post-processing skill will only be as good as the data used to train the 

method.  High-quality, shared analyses of high-impact variables are needed, including 
precipitation and precipitation type, surface temperature, winds, and humidity, and so 
forth. 
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5. Applications. 
 

5.1 Introduction. 
 
A major motivation for running ensemble prediction systems is to provide better 

predictions of the risk of high-impact weather.  The THORPEX Global Interactive 
Forecast System (GIFS)-TIGGE working group to foster the development of multi-centre 
ensemble-based products to support this goal using the TIGGE dataset.  

 
An initial focus of this work was on the developments of experimental products to 

support tropical cyclone forecasting.  Most of the weather prediction centres that 
participated in TIGGE provided forecasts of tropical cyclone tracks, and in some cases 
additional data including intensity.  Those were exchanged using a new XML-based 
format (known as CXML, see http://www.bom.gov.au/cyclone/cxmlinfo/), to support the 
THORPEX Pacific Asian Regional Campaign (T-PARC) and subsequent forecast 
demonstration projects. With the help of TIGGE data, several different types of products 
have been developed to support forecasts of tropical cyclones.  A simple approach is to 
plot the individual tracks from each ensemble member.  Another approach that has 
been widely adopted is to calculate a “strike probability” map, showing the probability 
that the cyclone with pass within a set distance (normally 120 km) of any point (van der 
Grijn et al. 2004).  Figure 3 shows an example of this type of plot for typhoon Hagupit 
that struck the Philippines in early December 2014.  Other useful products include 
ellipses (Hamill et al. 2011) and graphs showing time series of various measures of the 
forecast cyclone intensities (e.g., central pressure, maximum wind speed, or vorticity, 
such as Fig. 3 of Hamill et al. 2012).   

 
As noted above, objective verification scores indicate that combining ensembles 

together is generally beneficial, especially giving improved measures of the 
uncertainties in cyclone track forecasts, (e.g., Yamaguchi et al. 2012).  With the 
exchange of cyclone forecast information by TIGGE partners, it has been 
straightforward to use those data to produce strike probabilities and other products 
based a multi-model grand ensemble.  Indeed, the examples shown in Figure 3 are 
based on the combination of three ensembles. 

 
 TIGGE has also been used more recently to highlight the risks of heavy rainfall, 
strong wind and extreme temperatures.  Using TIGGE data, Matsueda and Nakazawa 
(2014) developed a prototype suite of ensemble-based early warning products for 
severe weather events, using both single-model (ECMWF, JMA, NCEP, and Met Office) 
and multi-model grand ensembles. These products estimate the forecast probability of 
the occurrence of heavy rainfall, strong winds, and severe high/low temperatures, based 
on each model’s climatology. The procedure attempts to calibrate the products by using 
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the climatological probability density function from each ensemble to determine 
appropriate thresholds for severe weather events. Objective verification of the products 
confirms that the combination of four ensembles gives more reliable forecasts than the 
equivalent product based on a single ensemble. In another initiative developed using 
TIGGE data, forecasts of humidity are being used to help forecast meningitis outbreaks 
in the “meningitis belt” south of the Sahara (Hopson, 2014). 
 

With the sophistication of modern NWP systems, unless data is shared, there is 
now potentially large gap between the forecast information available in the most highly 
developed countries and that available in less developed countries.  Since developing 
countries are often particularly vulnerable to severe weather events, it is important to 
address that gap. The WMO has established a Severe Weather Forecast 
Demonstration Project (SWFDP) that enables some of the less-developed regions of 
the world to benefit from state of the art numerical predictions. This is achieved by 
global NWP centres supplying graphical products tailored to support regional SWFDP 
initiatives. Some of the products developed from the TIGGE data are now being rolled 
out for use in the SWFDP.  
 

The SWFDP was first established in Southern Africa, and following its early 
success, the initiative was extended to more countries.  The SWFDP was then 
established in a second region – the South Pacific, and has since been extended to 
South-east Asia and East Africa. It would be very beneficial to extend it to other regions, 
as funding allows.  
 
5.2  Underpinning research. 
 

In recent years there has been considerable improvement in the skill of tropical 
cyclone track forecasts, and ensembles have contributed a lot to quantifying the 
uncertainties in the track forecasts. However, the skill of forecasts of cyclone intensity 
has not improved at the same rate.  One factor leading to this poor skill could be that 
global NWP models, in particular those used for ensemble forecasting, are still relatively 
coarse in resolution compared with the size of storm’s inner core. Some recent studies 
have shown very encouraging results using very high-resolution, limited-area models to 
simulate the evolution of tropical cyclones (Gall et al. 2013 and references therein).  
However, the initialization of mesoscale structures is hindered by challenges with data 
and assimilation methodologies, including the relative paucity of inner-core data in many 
circumstances as well as other challenges such as substantial position errors and non-
Gaussian error statistics (Chen and Snyder 2007, Geer and Bauer 2011, Nehrkorn et al. 
2015; and section 2 of this chapter).  Continued research on assimilation methods and 
high-resolution modelling of tropical cyclones is warranted. 
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While it has proved feasible to provide high-quality forecasts of tropical cyclones 

tracks a few days ahead, the next challenge is to look further ahead, which entails 
forecasting cyclone formation as well as evolution. Recent work using the TIGGE 
ensembles shows that it is now becoming possible to give probabilistically based 
forecasts of the likelihood of tropical cyclone formation, and an indication of their future 
tracks, as shown in Figure 4.  There are obvious societal benefits from further 
improvements to both cyclone intensity forecasts and the extension of the forecast 
range.   Given that tropical cyclone formation is sometimes over- or under-forecast in 
models, the use of reforecasts to assess the deviations of genesis from their 
climatological probabilities may be helpful (e.g., Fig. 4 from Hamill et al. 2012). 
 
 Ensembles provide a wealth of information, but this information needs to be 
synthesized into products that are most useful for decision makers.  There is still a 
significant role for social scientists to play in helping meteorologists determine the best 
ways to convey probabilistic information (e.g., Joslyn and Savelli 2010, Savelli and 
Joslyn 2013, Novak et al. 2014, Ash et al. 2014). 
 
5.2 Linkages and requirements 
 
 The WMO/WWRP High-Impact Weather (HIWeather) project is laying out a 
research and development agenda that includes the development of applications for 
using ensemble and multi-model ensemble data.  The goal is to  
 

“Promote cooperative international research to achieve a dramatic increase in  
resilience to high impact weather, worldwide, through improving forecasts for  
timescales of minutes to two weeks and enhancing their communication and 
utility in social, economic and environmental applications.” 

 
The reader is encouraged to consider the implementation plan (Jones and Golding, 
2014).  This program will coordinate the activities of physical scientists and social 
scientists to address major high-impact weather phenomena, including urban flooding, 
wildfire, localised extreme wind, disruptive winter weather, and urban heat waves/air 
pollution.   Databases of regional and global weather ensembles and intraseasonal 
ensembles will continue to be very helpful in the research and development of 
experimental forecast products. 
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6. Conclusions 
 

In the past two decades, considerable progress had been made in quantifying 
uncertainties in weather forecasts using ensemble prediction systems.  Ensemble 
Prediction Systems need represent both the uncertainties in the initial conditions, and 
how those uncertainties evolve during the course of the forecast.  The quantification of 
initial errors is closely linked to the data assimilation problem.  The problem of 
representing the effect of model errors in a physically reasonable and yet statistically 
correct manner remains a major challenge, requiring the deployment of sophisticated 
stochastic modelling techniques.  The challenge is magnified as model resolutions 
increase, so that physical processes are partly (but not fully) resolved – the so-called 
“grey zone” problem.  Stochastic forcing methods will remain a key area for further 
research and development in the coming decades. 
 

The next part of the challenge is the translation of ensemble output to create 
probabilistic weather forecasts – and particularly to alert people to the risks of severe 
weather events. Especially using TIGGE data, there have been considerable 
developments in recent years on using both statistical methods and the combination 
ensembles to reduce systematic errors and provide reliable probabilistic forecast 
products.  The communication and application of such probabilistic forecasts is a further 
challenge, addressed by the User, Applications and Social Science component of this 
conference. 
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Tables and Figures 
 

 

 
 
Figure 1. a) Schematic showing clear scale separation between resolved flow and sub grid-
scale convection. b) schematic of a more realistic situation where there is no scale separation.  
From Palmer (2012). 
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Figure 2. Demonstration of the ability of ECC to recover spatial structure in calibrated 
ensembles.  Top row shows temperature forecasts from different ECMWF ensemble members 
that have been calibrated using BMA. Second row shows the calibrated forecasts after ECC 
processing.  The bottom picture shows the corresponding nowcast temperature field. Figure 
reprinted from Schefzik et al., (2013). 
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Figure 3: Example of tropical cyclone forecast products for a forecast of typhoon Hagupit from 
the intial time of 12 UTC 6 December 2014. Left plot: individual track forecasts from each 
ensemble member.  Right plot: summary plot showing strike probability key tracks.  
 
 

 
 
Figure 4. Ensemble forecasts of tropical cyclone activity at a range of 6-9 days, from initial 
conditions at 12UTC on 9th September 2010. Three tropical cyclones occurred in this period: 
hurricane Igor formed about a day before the start of  forecast, Julia about 3 days after the start 
and Karl about 5 days afterwards. Top left plot: areas affected by the three hurricanes. Bottom 
left plot: climatological hurricane activity.  Remaining plots: forecasts of activity from four 
ensemble systems, ECMWF, JMA, NCEP and UKMO.  From Yamaguchi (2014).   


